Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties.
نویسندگان
چکیده
Yeast surface display libraries of human IgG1 Fc regions were prepared in which loop sequences at the C-terminal tip of the CH3 domain were randomized. A high percentage of these library members bound to soluble CD64 and Protein A indicating that the randomization step did not grossly interfere with the overall structure of the displayed Fc. Sorting these libraries by FACS for binders against HER2/neu yielded antigen-specific Fc binders (Fcab; Fc antigen binding) of which one was affinity matured, resulting in Fcab clone H10-03-6 which showed >10-fold improvement in antigen-binding activity versus the parental clone. Pre-equilibrium surface plasmon resonance experiments revealed a K(D) value of 69 nM. H10-03-6 did not react with other members of the HER family and specifically interacted with HER2-positive but not with HER2-negative cells. Importantly, Fcab H10-03-6 elicited potent antibody-dependent cellular cytotoxicity in vitro. Finally, the in vivo half-life in mice was similar to wild-type Fc indicating that the amino acid changes in the CH3 domain did not affect the pharmacokinetic behavior of the recombinant Fc. Our data demonstrate that the Fcab scaffold combines all features of normal antibodies in a small 50 kD homodimeric protein: antigen binding, effector functions and long half-life in vivo.
منابع مشابه
Significant Impact of Single N-Glycan Residues on the Biological Activity of Fc-based Antibody-like Fragments*
Recent studies have demonstrated that IgG-Fc fragments (Fcabs) can be engineered to form antigen-binding sites with antibody properties. Thus they may serve as an attractive alternative to conventional antibodies in therapeutic applications. The critical influence of Fc glycosylation on effector functions of IgGs is well documented; however, whether this applies to Fcabs is not known. Here we u...
متن کاملConstruction of pH-sensitive Her2-binding IgG1-Fc by directed evolution
For most therapeutic proteins, a long serum half-life is desired. Studies have shown that decreased antigen binding at acidic pH can increase serum half-life. In this study, we aimed to investigate whether pH-dependent binding sites can be introduced into antigen binding crystallizable fragments of immunoglobulin G1 (Fcab). The C-terminal structural loops of an Fcab were engineered for reduced ...
متن کاملEngineered IgG1‐Fc – one fragment to bind them all
The crystallizable fragment (Fc) of the immunoglobulin class G (IgG) is a very attractive scaffold for the design of novel therapeutics due to its quality of uniting all essential antibody functions. This article reviews the functionalization of this homodimeric glycoprotein by diversification of structural loops of CH3 domains for the design of Fcabs, i.e. antigen-binding Fc proteins. It repor...
متن کاملStabilisation of the Fc Fragment of Human IgG1 by Engineered Intradomain Disulfide Bonds
We report the stabilization of the human IgG1 Fc fragment by engineered intradomain disulfide bonds. One of these bonds, which connects the N-terminus of the CH3 domain with the F-strand, led to an increase of the melting temperature of this domain by 10°C as compared to the CH3 domain in the context of the wild-type Fc region. Another engineered disulfide bond, which connects the BC loop of th...
متن کاملMolecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin
Disposition and transportation of anticancer drugs by human serum albumin (HSA) affects their bioavailability, distribution and elimination. In this study, the interaction of a set of anticancer drugs with HSA was investigated by molecular dynamics and molecular docking simulations. The drugs' activities were analyzed according to their docking scores, binding sites and structural descriptors. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein engineering, design & selection : PEDS
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2010